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Abstract

Purpose – The paper seeks to focus on obtaining the transient torque required to rotate the inner
cylinder in open ended vertical concentric annuli for a fluid of Pr¼ 0.7 in the laminar natural convection
flow regime over a wide range of the controlling parameter Gr2/Ta. The inner wall is heated and
subjected to an impulsive rotation while the outer one is stationary and maintained adiabatic.
Design/methodology/approach – The governing transient boundary-layer equations are
numerically solved using an iterative linearized finite-difference scheme.
Findings – The transient induced flow rate and absorbed heat for different annulus heights are
presented. High rotational speed (i.e. low values of Gr2/Ta) increases the flow rate and heat absorbed in
short annuli. However, for considerably tall annuli, Gr2/Ta has slight effect on the flow and heat
absorbed. The steady-state time is tangibly influenced by Gr2/Ta in considerably short annuli and very
slightly affected for considerably tall annuli.
Practical implications – The investigated problem can simulate the start-up period of naturally
cooled small vertical electric motors.
Originality/value – The paper presents results not available in the literature for the effect of Gr2/Ta
on the developing velocities, pressure, flow-rate induced, absorbed heat by fluid and required torque in
vertical concentric annuli with impulsively rotated inner walls under the transient free-convection heat
transfer mode.
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Nomenclature

b annular gap width, (r2� r1)

Cp specific heat of fluid at constant
pressure

D equivalent (hydraulic) diameter of
the annulus, 2b

f volumetric flow rate,Ð r2

r2
2�rudr ¼ � r2

2 � r2
1

� �
uo

F dimensionless volumetric flow rate,
f =�1�Gr� ¼ ð1� N 2ÞU o

g gravitational body force per unit
mass (acceleration)

Gr Grashoff number,
g�ðTw � ToÞD3=�2

Gr* modified Grashoff number,
GrðD=1Þ

h heat gained by fluid from the
entrance up to a particular
elevation in the annulus,
�ofCpðTm � ToÞ

h heat gained by fluid from the
entrance up to the annulus exit,
�ofcpðTm � ToÞ

H dimensionless heat absorbed from
the entrance up to any particular
elevation, h=½��O Cp1�Gr�

ðTw � ToÞ� ¼ F�m ¼ 2
Ð 1

N UR� dR

H dimensionless heat absorbed from
the entrance up to the annulus exit
Z=L, h=½��OCp1�Gr�ðTw � ToÞ� ¼
F�m ¼ 2

Ð 1

N
UR�dR

1 height of annulus
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L dimensionless height of annulus, 1/
Gr*

M* torque (moment) required to rotate
the inner cylinder

M dimensionless torque,
M�=2��r3

1r2�uo

N radius ratio, r1/r2

p Pressure of the fluid inside the
channel at any cross station

p0 pressure defect at any
point, p� ps

po pressure of the fluid at the annulus
entrance,�ð�Ou2

o=2Þ
ps hydrostatic pressure,��ogz

P dimensionless pressure defect at
any point, p0r4

2=�O12�2 Gr�ð Þ2

Po dimensionless pressure defect at
the annulus entrance,
por4

2=�O12�2 Gr�ð Þ2¼ �U 2
o =2

Piw dimensionless pressure defect at
the inner wall

Pow dimensionless pressure defect at
the outer wall

Pr Prandtl number, �Cp=	 ¼ �=

r radial coordinate

r1 inner radius of the annulus

r2 outer radius of the annulus

R dimensional radial coordinate,
r=r2

t dimensionless time, �t � =r2
2

� dimensionless temperature,
ðT � TOÞ=ðTw � TOÞ

To fluid temperature at annulus
entrance

Tw temperature of heat transfer
boundary

Tm dimensionless mixing cup
temperature

Ta Taylor number,
2�2r2

1b3=ð�2ðr1 þ r2ÞÞ
Ta* modified Taylor number, Taðb=lÞ2

u instantaneous axial velocity
component at any point

uo instantaneous entrance axial
velocity,

Ð r2

r1
2�rudr=½�ðr2

2 � r2
1Þ�

U dimensionless axial velocity
component at any point,
ur2

2=1�Gr�
Uo dimensionless axial velocity at the

entrance, uor2
2=1�Gr�

v radial velocity component at any
point

V dimensionless radial velocity
component at any point, �vr2=�

w instantaneous tangential velocity
component at any point

W dimensionless tangential velocity
component at any point, w=�1r1

z axial coordinate

Z dimensionless axial coordinate,
z=1Gr�


 thermal diffusivity, 	=�oCp

� coefficient of thermal expansion

� kinematic fluid viscosity, �=�o

� angular velocity of the inner wall

r fluid density

� dynamic fluid viscosity

�� tangential shear stress on the inner
cylinder surface, � @w=@rð Þr1

� dimensionless tangential shear
stress on the inner cylinder surface,
ð��=��NÞ ¼ ð@W=@RR¼N Þ

Introduction
Unsteady free convection flow between concentric cylinders has many applications in
convection heat transfer devices and electric machines. The transfer of heat by natural
convection is always a factor in the cooling of electric machines. The design of cooling
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systems for such electric machines requires knowledge of the hydrodynamic behavior
of the flow to limit the rotor temperature to less than the maximum permitted value.

The transient nature on flows may be caused by many reasons. One of such reasons
is due to the sudden starting that takes place at the early stages of operating any
machine. A very important application pertaining to this research is the starting of the
naturally cooled electric motors. Beside other applications in chemical mixings
processes, fiber coating applications and drying machinery, there are possibilities of
future applications for compact rotary heat exchangers and combustion chambers.

Literature up to 1982 for the flow between parallel plates can be found in Nakamura
et al. (1982). Joshi (1988) studied the transient natural convection between vertical
parallel plates numerically. The two classical boundary conditions of uniform wall
temperature and uniform heat flux were considered. His results presented the rate of
heat transfer for uniform wall temperature and the maximum wall temperature for
uniform heat flux. Nelson and Wood (1989) presented a numerical analysis for
developing laminar flow between vertical parallel plates for combined heat and mass
transfer natural convection with uniform wall temperature and concentration
boundary condition. They found that at intermediate Rayleigh numbers, the parallel
plate heat and mass transfer is higher than that for single plate. Floryan and Novak
(1994) investigated the free convection heat transfer in multiple parallel vertical
channels with isothermal walls. Their results show that the interaction between
channels increases with Grashoff number and decreases with the distance between
them. Al-Subaie and Chamkha (2003) developed an analytical solution for the
continuum equations governing transient, laminar, fully developed natural convection
flow of a particulate suspension through an infinitely long vertical channel.

Flow in stationary vertical annuli and cylinders have been reported in the following
references (Hess and Miller, 1979; Prasad et al., 1986; Holzbecher and Steiff, 1995; Zaki
et al., 2000; Al-Arabi et al., 1987; Rogers and Yao, 1993; Kumar, 1997; El-Shaarawi and
Negm, 1999; El-Shaarawi and Al-Nimr, 1990; El-Shaarawi and Alkam, 1992; El-
Shaarawi and Al-Attas, 1992; El-Shaarawi et al., 1995, 1999; Reeve et al., 2004).
Experimental investigations have been focused in the following references (Hess and
Miller, 1979; Prasad et al., 1986; Holzbecher and Steiff, 1995; Zaki et al., 2000). Hess and
Miller (1979) investigated experimentally the axial velocity of fluid contained in a
cylinder subject to constant heat flux. They used a laser Doppler velocimeter to
measure this velocity. They showed that the flow field is different from that on a
vertical flat plate due to recirculating zone and the presence of the top. Prasad et al.
(1986) studied experimentally the steady-state natural convection in a concentric tall
vertical annulus filled with saturated porous media when the inner wall is heated by
applying a constant heat flux and the outer wall is isothermally cooled. They obtained
the temperature profiles and heat transfer rates for the two aspects and radius ratios of
14.4 and 11.08. Holzbecher and Steiff (1995) investigated experimentally the natural
convection flow in internally heated vertical cylinders. Zaki et al. (2000) studied the
natural convection mass transfer behavior of the inner cylinder of a long vertical
annulus by measuring the limiting current of the cathodic deposition of copper from
acidified copper sulphate solution.

Numerical investigations for developing steady free convection in vertical
concentric annuli can be found in the following references (Al-Arabi et al., 1987; Rogers
and Yao, 1993; Kumar, 1997; El-Shaarawi and Negm, 1999). Al-Arabi et al. (1987) used a
finite-difference method to study the laminar natural convection through vertical
annuli with one wall uniformly heated and the other wall adiabatic. Rogers and Yao
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(1993) studied the natural convection in a heated vertical concentric annulus with
constant heat flux on the inner cylinder and the outer cylinder is insulated. Their
results show that the instability occurrence is dependent on the Prandtl number.
Kumar (1997) obtained numerical results of heat transfer rates and flow fields in a
vertical annulus with longitudinal fins for various parameters. He found that the heat
transfer rate increases as the fin ratio and the radius ratio increase. Also, the heat
transfer rate decreases as the aspect ratio and the fin thickness increase. El-Shaarawi
and Negm (1999) presented the steady conjugate heat transfer problem in vertical open-
ended concentric annuli under the laminar natural convection flow regime. They used
a finite-difference technique to solve the governing equations with the outer wall being
isothermal while the inner wall is kept adiabatic. They presented effect of solid–fluid
conductivity ratio on the induced flow behavior and other engineering parameters.
Fully-developed natural convection has been investigated by El-Shaarawi and Al-Nimr
(1990). They presented the analytical solutions for fully developed natural convection
in open-ended vertical concentric annuli corresponding to four fundamental boundary
conditions. They presented the volumetric flow rate, heat absorbed, fluid temperature
and local Nusselt number.

Transient convection heat transfer in vertical concentric annuli has been treated in the
following references (El-Shaarawi and Alkam, 1992; El-Shaarawi and Al-Attas, 1992; El-
Shaarawi et al., 1995, 1999; Reeve et al., 2004). El-Shaarawi and Alkam (1992) used a
finite-difference scheme to solve the transient laminar forced convection problem in the
entry region of a concentric annulus with a step change in temperature at one of the
annulus boundaries or a step change in temperature at both inlet cross-section and one of
annulus boundaries while the other boundary kept adiabatic. They found that heating
outer boundary effect is much higher than heating the inner boundary. El-Shaarawi and
Al-Attas (1992) investigated the transient laminar free-convection problem in vertical
open-ended concentric annuli. El-Shaarawi et al. (1995) used finite-difference scheme to
solve the transient conjugate heat transfer problem in concentric annuli. They showed
the effects of solid-fluid conductivity ratio and diffusivity ratio on the thermal behavior
of the flow. El-Shaarawi et al. (1999) investigated numerically the transient conjugate
heat transfer in a porous medium in concentric annuli. Reeve et al. (2004) presented the
numerical predictions of axisymmetric natural convection within a tall annular cavity
with an aspect ratio of 10 and radius ratio of 0.6.

Flow between concentric annuli with the inner wall rotating has been studied in the
following papers. Bird et al. (1959) obtained the pressure distribution for isothermal, pure
tangential flow in an annulus by first solving for a compressible fluid and then taking the
limit as the deviation from the incompressibility vanishes. They obtained an analytical
expression for pressure vs the radial coordinate for either or both cylinder in rotation. El-
Shaarawi and Sarhan (1981) developed a finite-difference scheme for solving the
boundary-layer equations governing the laminar free convection flow in open-ended
vertical concentric annuli with rotating inner walls with one wall being isothermal and
the other wall adiabatic. El-Shaarawi and Khamis (1987) investigated the laminar
induced flow natural convection through an open-ended vertical annulus with a rotating
inner cylinder heated at constant heat flux and an adiabatic outer boundary. They used
finite-difference scheme to solve the boundary-layer governing equations. El-Shaarawi
et al. (1997) studied numerically the tangential shear stress and the torque required to
turn the inner shaft of concentric annuli having laminar forced flow with simultaneously
developing tangential and axial boundary layers. They presented the effect of the two
controlling parameters (radius ratio (N) and Re2/Ta) on the torque. Hwang and Yang
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(2004) studied numerically the flow between two concentric cylinders with inner one
rotating and with imposed pressure-driven axial flow. They found that the axial flow
stabilizes the flow field and decreases the torque required to rotate the inner cylinder at a
given speed. Kim and Choi (2005) analyzed using the linear theory the onset of initial
instability in a developing Couette flow following the impulsive starting of an inner
rotating cylinder. Ball et al. (1989) studied experimentally the convection flows
engendered within the annular gap between concentric vertical cylinders with rotating
and heated inner cylinder while the outer cylinder is stationary and cooled. Their results
showed the interdependence between the heat transfer mechanism and the structure of
the secondary flows. Mixed convection in vertical concentric annulus with the inner wall
rotating has been investigated by El-Shaarawi and Sarhan (1982). They used finite-
difference scheme to solve the combined forced-free laminar boundary layer flow in a
vertical concentric annulus with a rotating inner cylinder. They investigated the effect of
a superimposed aiding or opposing free convection on the developing tangential velocity
profiles. Bird and Curtiss (1959) obtained an exact solution for the equations of the
unsteady, laminar, tangential flow of isothermal fluid in the annular space between two
cylinders one or both of which may be rotating. Mullin et al. (1981) measured the
fluctuating cellular flows between concentric cylinders with the inner one rotating using
the recurrence-rate correlation technique.

Governing equations
Figure 1 shows a concentric annulus and the cylindrical coordinate system used.
Initially, the fluid is at rest everywhere. Then a step rise in the temperature of the inner
wall occurs simultaneously with an impulsive rotation of the inner wall. As a result of
the step rise in the temperature, fluid rises in the annular gap between the cylindrical
walls by natural convection. It is assumed that the fluid enters the annular gap with a
time-dependent uniform velocity profile uo(t) of a value equal to the instantaneous
mean axial velocity in the annular gap while the impulsively-rotated inner wall has a
constant angular velocity, ! and the outer wall is stationary. Thus, the flow regime is

Figure 1.
Problem Geometry of the

concentric cylinder and
velocity components



HFF
19,2

206

an unsteady free convection flow through an annulus with an impulsively rotated inner
wall with a constant angular velocity !.

The fluid is assumed to be Newtonian, incompressible and has constant physical
properties with the exception of the density that varies according to the Boussinesq
approximation.

Under the above assumptions and using the boundary-layer simplifications
(El-Shaarawi and Sarhan, 1981; El-Shaarawi et al., 1997), the governing equations for
the unsteady free convection in the entry region of a vertical concentric annulus with
an impulsively rotating inner cylinder reduce to the following equations

1

r

@

@r
rvð Þ þ @u

@z

� �
¼ 0 ð1Þ

�O

w2

r

� �
¼ @P

@r

� �
ð2Þ

�O

@w

@t
þ v

@w

@r
þ u

@w

@z

� �
¼ � @2w

@r2
þ 1

r

@w

@r
� w

r2

� �
ð3Þ

@u

@t�
þ v

@u

@r
þ u

@u

@z
¼ � 1

�O

@p

@z
þ g� T � TOð Þ þ �

r

@

@r
r
@u

@r

� �
ð4Þ

@T

@t�
þ v

@T

@r
þ u

@T

@z
¼ 


r

@

@r
r
@T

@r

� �
ð5Þ

Introducing the dimensionless parameters given in the Appendix, these equations can
be written as follows

@V

@R
þ V

R
þ @U

@Z
¼ 0 ð6Þ

W 2

R
¼ 8 1� Nð Þ5

1þ N

Gr2

Ta

@P

@R
ð7Þ

@W

@t
þ V

@W

@R
þ U

@W

@Z
¼ @

2W

@R2
þ 1

R

@W

@R
�W

R2
ð8Þ

@U

@t
þ V

@U

@R
þ U

@U

@Z
¼ � @P

@Z
þ �

16 1� Nð Þ4
þ 1

R

@

@R
R
@U

@R

� �
ð9Þ

@�

@t
þ V

@�

@R
þ U

@�

@Z
¼ 1

Pr

1

R

@

@R
R
@�

@R

� �
ð10Þ
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These five coupled equations (Equations (6)-(10)) are subject to the following initial and
boundary conditions

Initial conditions (t¼ 0): U¼V¼W¼P ¼ �¼ 0 everywhere
For t > 0:
Entrance conditions: At Z¼ 0 and N < R < 1, U¼Uo(t), V¼W¼ �¼ 0 and

P¼�Uo
2/2

Inner wall conditions: For Z > 0 and R¼N: U¼V¼ 0, W¼ 1, �¼ 1(isothermal inner
wall)

Outer wall conditions: For Z < 0 and R¼ 1: U¼V¼W¼ 0, @�=@R ¼ 0 (adiabatic
outer wall)

Equation (6) subject to the above conditions can be written in the following integral
form:

F ¼ ð1� N 2ÞUo ¼ 2

ð1

N

RUdR ð11Þ

Results and discussion
The above equations have been numerically solved using an iterative linearized finite-
difference scheme (El-Shaarawi and Alkam, 1992; El-Shaarawi et al., 1995, 1997; El-
Shaarawi and Sarhan, 1981). For an annulus of a given N, the numerical solution of the
finite-difference equations is obtained by first selecting values of N, Gr2/Ta, Pr, L
(dimensionless annulus height, 1/Gr), �R , �Z and �t. Moreover, for each time step,
the value of the inlet velocity Uo(t) should be assumed. Such an assumed value of Uo(t)
should give a value of the dimensionless pressure defect at the exit section equals zero
or practically satisfies the arbitrarily chosen criterion close to zero (�10�15). To satisfy
this condition, iteration process is used for every time step as follows. First, the inlet
axial velocity (Uo) is assumed and computations continue, for this time step, till the
exit-cross-section dimensionless pressure defect is obtained. If it does not satisfy the
above criterion, another value of the inlet axial velocity has to be assumed, for the same
time step, and its corresponding exit dimensionless pressure defect has to be
computed. Then, a linear interpolation is done between these two assumed values of Uo

to get the next trial value of the inlet axial velocity Uo corresponding to zero
dimensionless pressure defect at the annulus exit. Such an interpolation process
continues, for the same time step, till the dimensionless exit pressure defect satisfies
the above iteration criterion.

The above numerical algorithm starts by the solution of the tangential momentum
equation to obtain the values of W after one time step, �t. Starting with j¼ 1 (annulus
entrance cross-section) and applying the finite-difference form of Equation (8), we get
simultaneous linear equations which when solved by Thomas’ method give the
unknown values of W’s at all points of the second cross-section. Similarly, the
temperature field is obtained by applying the finite-difference form of Equation (10)
with to get the unknown values of � ’s at the second cross-section when solved by
Thomas’ method. Now applying the finite-difference forms of Equation (9) together
with Equation (11) we obtain equations which when solved by a special form of Gauss–
Jordan eliminations scheme give the unknown values of U’s at all points of the second
cross-section and P1,2,2. After getting P1,2,2, the finite-difference form of Equation (7)
can now be applied in a stepwise order with i¼ 2, 3, . . . , nþ 1 to get the values of
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P2,2,2, . . ., Pnþ1,2,2. Using the computed values of U’s and applying the finite-difference
form of Equation (6) we get the values of V’s at all points of the second cross-section.

The same procedure process can then be repeated for each next time step till steady-
state conditions are reached. The change in the total heat absorbed is used as a
criterion for the achievement of steady-state conditions. Steady-state conditions are
considered achieved if the following criterion is satisfied:

�10�6 � Hðkþ 1Þ � HðkÞ
Hðkþ 1Þ

� 10�6:

Engineers are usually interested in calculating the torque required to rotate the inner
cylinder. At a given axial distance from the annulus entrance (z), the infinitesimal
resisting torque (dM*) exerted by the fluid on a surface element of the inner cylinder
having an area dA ¼ 2�r1dz is due to the local tangential shear stress
�� ¼ �ð@w=@rÞr1

and is given by

dM� ¼ 2��r2
1

@w

@r

� �
r1

dz

Hence upon integration from the annulus entrance (z¼ 0) to any axial distance z, one
obtains the following expression for the torque (M*) required to rotate a height z of the
inner cylinder.

M� ¼ 2��r2
1

ðz

0

@w

@r

� �
r1

dz

Introducing the dimensionless torque (M) needed to rotate a dimensionless height Z as

M ¼ M�

�2�r3
1r2�uo

Hence,

M ¼
2��r2

1

Ð z

0

@w

@r

� �
r1

dz

�2�r3
1r2�uo

¼
�
Ð z

0

@w

@r

� �
r1

dz

�r1r2�uo

Using the dimensionless parameters given in the nomenclature, above equation can be
written as

M ¼
��r11Gr�

Ð z

0

@W

@RR¼N

dZ

�r1r2
2�uo

¼

Ð z

0

@W

@RR¼N

dZ

Uo
ð12Þ

The total torque required to rotate the inner cylinder of height L, i.e. value of M at
Z¼L, is, therefore, given by

Mex ¼
Ð L

0
@W
@RR¼N

dZ

Uo
ð13Þ
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The steady-state fully-developed tangential and axial velocity profiles analytical
solutions are given in El-Shaarawi and Sarhan (1981) as:

Wss;fd ¼
N

1� N 2

1

R
� R

� �
ð14Þ

Uss;fd ¼
1

64ð1� NÞ4
1� R2 � 1� N2

ln N
� ln R

" #
ð15Þ

To check the adequacy of the present numerical results, the steady-state fully
developed tangential and axial velocity profiles which could be obtained at exit of a tall
annulus at considerably large values of time have been compared in Table I with their
corresponding analytical solution (given by Equations (14) and (15)).

Figure 2.
Effect of Gr2=Ta on the

tangential velocity
profiles at t ¼ 0:01 for

short annulus
ðL ¼ 0:001Þ at Z ¼ 0:0001

(near entrance)

Table I.
Comparison of the

present steady-state fully-
developed tangential and

axial velocity values at
the exit of a sufficiently
tall annulus (L¼ 0.1) for

Gr2/Ta¼ 500 with the
corresponding fully

developed analytical
solution

R

Wfd Ufd

Present
results

Equation
(14)

Percentage
difference

Present
results

Equation
(15)

Percentage
difference

0.600 0.71112808 0.71111111 0.00238595 0.02175052 0.02181895 0.31361429
0.700 0.48573286 0.48571429 0.00382474 0.03092045 0.03101753 0.31299564
0.800 0.30001428 0.30000000 0.00475877 0.02954585 0.02963848 0.31254839
0.900 0.14074834 0.14074074 0.00539895 0.01894010 0.01899942 0.31220640
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To explore the physics of the transient flow, computations were carried out for a fluid
of Pr¼ 0.7 in two annuli of N¼ 0.5 with L¼ 0.001 (short annulus) and L¼ 0.1 (tall
annulus) at selected time and different values of Gr2/Ta. Figures 2-4 and Table II show
the effect of Gr2/Ta on the developing tangential velocity profiles at specific values of
time, t¼ 0.01 for a short annulus (L¼ 0.001) and t¼ 0.1 for a tall annulus (L¼ 0.1), at
three different axial positions (near entrance, mid-height and exit). It can be seen that
Gr2/Ta has remarkable effects on the developing tangential velocity profiles in the
short annulus as shown in Figures 2-4. However, for a tall annulus, Gr2/Ta has a slight
effect on the tangential velocity profiles near the entrance and such effect disappears
from the mid-height till exit, as shown in Table II. The minimum value of Gr2/Ta that
was investigated for both annulus heights is 500. This is due to Taylor vortices that
might occur with values of Gr2/Ta < 500.

Figure 4.
Effect of Gr2=Ta on the
tangential velocity
profiles at t ¼ 0:01 for
short annulus (L ¼ 0:001Þ
at Z¼L (exit)

Figure 3.
Effect of Gr2=Ta on the
tangential velocity
profiles at t ¼ 0:01 for
short annulus
ðL ¼ 0:001Þ at Z ¼ 0:0005
(mid-height)
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Table II.
Effect of Gr2/Ta on the

tangential velocity at
t¼ 0.2 for tall annulus

(L¼ 0.1)
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Figure 5.
(a) Effect of Gr2=Ta on
the axial velocity profiles
at t ¼ 0:01 for short
annulus ðL ¼ 0:001Þ at
Z ¼ 0:0001 (near
entrance); (b) effect of
Gr2=Ta on the axial
velocity profiles at
t ¼ 0:01 for short annulus
ðL ¼ 0:001Þ at Z¼ 0:0005
(mid-height); (c) effect of
Gr2=Ta on the axial
velocity profiles at
t ¼ 0:01 for short annulus
ðL ¼ 0:001Þ at Z ¼ L
(exit); (d) effect of Gr2=Ta
on the axial velocity
profiles at t ¼ 0:2 for tall
annulus ðL ¼ 0:01Þ at
Z ¼ 0:0005 (near
entrance)



Transient
moment to rotate

inner walls

213

These figures show that for a given time and near the entrance the tangential velocity
increases as Gr2/Ta increases due to the thinning of the tangential boundary-layer
thickness with the decrease in the value of Gr2/Ta (i.e. the increase in the rotational
speed of the inner cylinder for a given Gr, i.e. L). However, far away from the entrance
in the short annulus (L¼ 0.001), the tangential velocity decreases as Gr2/Ta increases
as shown in Figures 3 and 4.

Figure 5(a)-(d) shows the effect of Gr2/Ta on the axial velocity profiles in short and
tall annuli. We can see that, for short annuli, decreasing Gr2/Ta (increasing the inner
cylinder rotational speed) generally increases the axial velocity at all axial positions
(near entrance, mid-height, exit) and makes the axial velocity profiles more skewed
inward. This is in agreement with Astill’s results (Astill et al., 1968) for the case of
forced flow. However, for Gr2/Ta more than 50,000 the axial velocity is not affected in
both short and tall annuli.

On the other hand, for tall annuli Gr2/Ta affects the axial velocity profiles only near
entrance as shown in Figure 5(d) and Table III.

The effect of Gr2/Ta on the radial pressure distribution at different axial positions
for a given specific time values are presented in Figure 6(a)-(c). As Gr2/Ta decreases (i.e.
the rotational speed increases), the pressure decreases near the inner rotating wall for
the two annulus heights at all the axial positions. However, for a considerably large
value of Gr2/Ta� 50�103 (very low rotational speeds) the radial pressure becomes
almost flat (showing no effect of the rotation on the radial velocity profile).

Figure 6(d)-(g) shows the variation of the pressure at the inner and outer walls of the
annulus with the axial distance for short and tall annulus where Gr2/Ta¼ 10,000 and
5,000, respectively. The pressure is lower at the inner wall than the outer wall due to the
rotational speed effect as shown in the previous figures. The pressure decreases with
time for both inner and outer walls and it decreases with Z after entrance then it
recovers and increases with Z (as the buoyancy force develops and overcomes the
friction force) until it reaches the atmospheric pressure at the outer wall of the exist
cross-section.

Engineers are frequently not concerned with the velocity, pressure and temperature
profiles. Rather they are interested in the torque needed to rotate the inner cylinder, the
heat transferred to the fluid from the heated boundary and the induced flow rate
through the annulus. Therefore, Figure 7(a)-(c) present the total torque (from entrance
till the annulus exit) needed vs time for different annulus heights. As can be seen from
these figures, the taller the annulus the higher the torque needed. For any given
annulus height (L), torque decreases with time due to the sudden starting that takes
place at the early stage and reaches the steady-state value at large value of time; the
starting torque (at t¼ 0) is theoretically 1 (due to the boundary-layer assumptions).
Figure 7(a)-(c) are very useful for engineers to find the time variation of the power

Table III.
Effect of Gr2/Ta on the
axial velocity at t¼ 0.2

for tall annulus (L¼ 0.1)

Values of U at Z¼ 0.05 (mid-height) Percentage Values of U at Z¼L (exit) Percentage
R Gr2/Ta¼ 500 Gr2/Ta¼ 5�106 difference Gr2/Ta¼ 500 Gr2/Ta¼ 5�106 difference

0.6 0.01837015 0.01830393 0.36043670 0.01837015 0.01830393 0.36043670
0.7 0.02560457 0.02551057 0.36710094 0.02560457 0.02551057 0.36710094
0.8 0.02412481 0.02403494 0.37250931 0.02412481 0.02403494 0.37250931
0.9 0.01534854 0.01529079 0.37625907 0.01534854 0.01529079 0.37625907
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Figure 6.
(a) Effect of Gr2=Ta on
the pressure profiles at
t ¼ 0:1 for tall annulus
ðL ¼ 0:1Þ at Z ¼ 0:0005
(near entrance); (b) effect
of Gr2=Ta on the pressure
profiles at t ¼ 0:1 for tall
annulus ðL ¼ 0:1Þ at
Z ¼ 0:05 (mid-height); (c)
effect of Gr2=Ta on the
pressure profiles at
t ¼ 0:1 for tall annulus
ðL ¼ 0:1Þ at Z ¼ L (exit);
(d) pressure at the inner
wall vs Z for short annuli
ðL ¼ 0:001Þ,
Gr2=Ta ¼ 10:000;
(e) pressure at the outer
wall vs Z for short annuli
ðL ¼ 0:001Þ,
Gr2=Ta ¼ 10:000;
(f) pressure at the inner
wall vs Z for tall annuli
ðL ¼ 0:1Þ,
Gr2=Ta ¼ 5; 000; (g)
pressure at the outer wall
vs Z for tall annuli
ðL ¼ 0:1Þ,
Gr2=Ta ¼ 5; 000
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needed to rotate the inner cylinder; the power is simply the torque multiplied by the
rotational speed.

Figure 8(a)-(c) presents the volumetric flow rate vs time for various annulus heights.
For a given time, the volumetric flow rate increases with height (L). Moreover, for a
given annulus height the flow rate generally increases with time.

Figure 9(a) and (b) shows the total heat absorbed (H) vs time for the investigated
values of annulus heights. As can be seen from these figures, the total heat, at a specific
instant, is directly proportional to the annulus height (L). This is because as Gr*
decreases (the annulus height increases) more flow is sucked by the annulus as a result of
the chimney effect and hence more heat is absorbed by the fluid. The overshooting
phenomenon is shown in these figures particularly for short annuli. It is clearly observed
that the overshooting is more pronounced for short annuli than for tall annuli.

Figure 6.
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Figure 7.
(a) Total torque needed vs
time ð0 � t � 0:25Þ, for
different annulus
heights, 0:0005 �
L � 0:005;Gr2=Ta ¼
50,000; (b) total torque
needed vs time
ð0 � t � 0:5Þ, for
different annulus heights,
0:0075 � L � 0:075;
Gr2=Ta ¼ 50;000; (c) total
torque needed vs time
ð0 � t � 1:0Þ, for
different annulus heights,
0:1 � L � 0:5;
Gr2=Ta ¼ 50;000
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Figure 8.
(a) Flow rate (F) vs time

0:0005 � L � 0:005;
Gr2=Ta ¼ 50;000; (b) flow
rate (F) vs time 0:0075 �

L � 0:075; Gr2=Ta =
50,000; (c) flow rate (F) vs

time 0:1 � L � 0:5;
Gr2=Ta ¼ 50;000
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Figure 9.
(a) Total heat absorbed
(H) vs time 0:0005 �
L � 0:005;
Gr2=Ta ¼ 50;000; (b)
Total heat absorbed (H) vs
time 0:0075 �
L ¼ 0:075;Gr2=Ta ¼
50,000

Table IV.
Effect of Gr2/Ta on the
volumetric flow rate and
heat absorbed for tall
annulus (L¼ 0.1)

Flow rate Heat absorbed

t Gr2/Ta¼ 500 Gr2/Ta¼ 5�106
Percentage
difference Gr2/Ta¼ 500 Gr2/Ta¼ 5�106

Percentage
difference

0.10 0.00868258 0.00864788 0.39966799 5.84E-03 5.81E-03 0.39589766
0.20 0.01337921 0.01333084 0.36157630 1.13E-02 1.12E-02 0.36932372
0.40 0.01511217 0.01506354 0.32183050 1.48E-02 1.48E-02 0.32183330
0.80 0.01544828 0.01540019 0.31135487 1.54E-02 1.54E-02 0.31136761
1.20 0.01545430 0.01540623 0.31108377 1.55E-02 1.54E-02 0.31105618
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The rotational speed (hence Gr2/Ta) has insignificant effect on either the volumetric
flow rate or the heat absorbed for tall annuli (L¼ 0.1) as shown in Table IV. However,
Figure 10(a) and (b) shows that for short annuli (L¼ 0.001) increasing the rotational
speed (i.e. decreasing the value of Gr2/Ta) induces higher flow rate and results higher
heat absorbed.

The time needed to achieve the steady-state conditions (tss) is computed based on the
criterion given in the method of solution. It is plotted against the annulus height in Figure
11. For a given value of Gr2/Ta, the steady-state time (tss) increases with the annulus
height. Similarly, for a given height, the steady-state time (tss) increases with Gr2/Ta.

Finally, the results of this work show that the steady-state time for considerably
short annuli reaches faster an almost constant value with Gr2/Ta as shown in Table V.

Figure 10.
(a) Effect of Gr2=Ta on

the volumetric flow rate
for short annulus

ðL ¼ 0:001Þ; (b) effect of
Gr2=Ta on the heat
absorbed for short

annulus ðL ¼ 0:001Þ
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On the other hand, for considerably tall annuli (L� 0.1), there is almost no effect of the
rotational speed (i.e. Gr2/Ta) on the steady-state time values. For L� 0.1, the steady-
state time value is 1.32 for all Gr2/Ta values (over the range 500�Gr2/Ta� 5,000,000).

Conclusions
This investigation provides data not available in the literature that are needed in many
engineering applications for the effect of Gr2/Ta on the developing velocities, pressure
and torque in vertical concentric annuli under the transient free-convection heat
transfer mode. Moreover, the transient induced flow rate and absorbed heat for
different annulus heights have been presented.

The results show that high rotational speed (i.e. low values of Gr2/Ta) increases the
flow rate and heat absorbed in short annuli. However, for considerably tall annuli, Gr2/
Ta has slight effect on the flow and heat absorbed. Finally, the obtained results show
that the steady-state time is tangibly influenced by Gr2/Ta in considerably short annuli
(L¼ 0.001) and very slightly affected for considerably tall annuli (L� 0.1).
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